
Using Tcl to curate OpenStreetMap
Kevin B. Kenny

5 November 2019
The massive OpenStreetMap project, which aims to crowd-source a detailed map of the entire Earth,
occasionally benefits from the import of public-domain data, usually from one or another government. Tcl,
used with only a handful of extensions to orchestrate a large suite of external tools, has proven to be a
valuable framework in carrying out the complex tasks involved in such an import. This paper presents a
sample workflow of several such imports and how Tcl enables it.

Introduction
OpenStreetMap (https://www.openstreetmap.org/) is an
ambitious project to use crowdsourcing, or the open-source
model of development, to map the entire world in detail. In
effect, OpenStreetMap aims to be to the atlas what
Wikipedia is to the encyclopaedia.

Project contributors (who call themselves, “mappers,” in
preference to any more formal term like “surveyors”) use
tools that work with established programming interfaces to
edit a database with a radically simple structure and map
the features of interest to them. Most work with some
combination of field survey (often simply done by visiting
the features of interest on foot or bicycle while logging
tracks on a GPS-enabled device such as a smartphone),
tracing features from publicly-available aerial imagery, and
editing the attributes of objects based simply on field notes
and local knowledge.

One controversial approach to editing OpenStreetMap is to
import data into the database from other sources. The
reason for the controversy is that this approach is far and
away the most difficult of the methods discussed here. It is
fraught with pitfalls. These include the license
compatibility of the data (does OpenStreetmap, and its
users, actaully have binding and permanent permission to
use and share the data?), the data quality (many
government data sets actually contain enough inaccurate
and downright incorrect data that the value added could
well be negative), and the problem of ‘conflation.’ The last
issue refers to the fact that imported data must be respectful
of the mapper who has acquired and edited the same feature
directly. At the very least, the imported features must be
combined and reconciled with what has been previously

mapped. In some cases, the only acceptable approach is to
avoid importing the colliding object altogether.

This paper discusses some case studies in using Tcl scripts
to manage the task of data import, including data format
conversion, managing of the relatively easy data integrity
issues such as topological inconsistency, identifying objects
for conflation, and applying the changes. In many ways, it
gets back to the roots of Tcl. There is no ‘programming in
the large’ to be done here. The scripts are no more than a
few hundred lines, and all the intensive calculation and data
management is done in an existing ecosystem of tools. No
Tcl extensions were developed in the course of the work
described. Nevertheless, Tcl proves invaluable in helping
this one mapper to keep his sanity through the import of
several large, government-supplied data sets.

Background

The data model
As mentioned before, OpenStreetMap’s data model is
radically simple. There are only three types of feature:
nodes, ways, and relations.

A node represents a point on the surface of the Earth. It has
a latitude and a longitude.

A way represents a linear feature. It comprises an ordered
sequence of nodes. It is possible for the same node to
appear multiple times in the sequence; this is generally
regarded as poor practice, except that repeating the same
node for the start and end of a way can be used to represent
an area feature (a polygon).

https://www.openstreetmap.org/

A relation is used for anything more complicated than a
node or way. It comprises an ordered sequence of nodes
and/or ways. As with nodes within ways, the members
within relations may appear more than once in the
sequence. In addition, a node or way in a relation may
optionally have a role. The role is simply a name; the
meaning of a role is by convention.

One important type of relation is the multipolygon, which
may contain only ways. The ways have the roles inner and
outer, indicating whether they represent the outer edge of
an area or the edge of a hole in the area. The relation is
therefore expected to consist of one or more contiguous
strings of outer ways, and zero or more contiguous strings
of inner ones, with no crossings in the ways. Area features
of arbitrary topology may therefore be referenced.

Each of the three types of object also has an unordered
collection of tags. A tag is merely a pair of strings; a
keyword and a value. Again, the interpretation of tags is a
matter of convention. The ‘correct’ use of tags can be quite
contentious; there are several mailing lists devoted to
tagging strategy, which all tend to have endless arguments
on them. A typical set of tags on a roadway might be:

highway=residential
lanes=2
maxspeed=50
name=Garden Drive
surface=asphalt

All the tags remain human readable but are drawn from a
limited vocabulary so as to be of use to automated data
consumers such as map renderers and navigation systems.

The ecosystem of tools
OpenStreetMap has a rich ecosystem of software tools
devoted to its maintenance. There is some history of
developing these in Tcl. For instance, Andrey Shadura (who
at the time favoured the transliteration, Andrew Shadoura)
carried out a 2010 project with sponsorship from Google
Summer of Code to develop an editor for OpenStreetMap
objects in Tcl/Tk [KUPR10]. This tool was released, but
ultimately proved to be unpopular and was abandoned.

Essentially, the only problem with it appears to have been
that embedding such a tool in Tcl does not provide enough
of an advantage to make it compelling. A fully functional
OpenStreetMap editor is a massive project, dealing with
many outside file formats, sources of imaging, and plugins

that provide specfic families of operations (such as editing
buildings, managing street addresses, or mapping traffic
turn restrictions).

Moreover, most of the editors actually host embedded Web
servers, supporting a limited number of GET operations
that allow panning and zooming the map, commanding a
download from the OpenStreetMap server, requesting that
the editor read data from a given URL (including fi le://
URL’s, allowing the loading of local data), and so on. This
interface proved adequate for most of the import tasks that
were attempted.

Perhaps surprisingly, no attempt was made to represent
geometry in Tcl at all. If Tcl were to contain the geometry,
then Tcl would have to work with all the complexity of
problems like “compute a multipolygon representing the
intersection of these other multipolygons”, “dilate this
multipolygon by five metres”, “compute the minimum set
of node reorderings needed to give this multipolygon a
consistent topology”, and so on. Such a task would have to
embed a computational geometry library such as GDAL
(Geospatial Data Abstration Library – https://gdal.org/).
Rather than develop such an extension, there was a
relatively simply approach: store all the geometry in tables
in a PostgreSQL database using the PostGIS extension
(https://postgis.net/) and carry out all the geometry
calculations there.

Making this decision opened up an entire Swiss Army
Knife of tools for manipulating geographic data. Imported
data, in practically any reasonable file format, could be
loaded with the ogr2ogr command line tool, and data in

the database could be reconverted to OpenStreetMap
format by the existing Python script ogr2osm.py.

This decision also enabled the possibility of using a
customary set of OpenStreetMap tools, osmosis and

osm2pgsql, to maintain a local copy of a large subset of

the OpenStreetMap database. The current setup keeps the
complete data set for the North American continent, and
updates it daily. With this data set at hand, arbitrary queries
against a (possibly slightly stale) copy of OpenStreetMap
are possible, a boon for determining the data relative to
conflation.

So, what does this mean for Tcl?
All of these decisions are consistent with what has been
traditionally considered to be The Tcl Way. Tcl was born as

https://postgis.net/
https://gdal.org/
../../../../
../../../../

a “glue” language for the purpose of integrating other tools,
and it does that job well. Only a small number of Tcl
extensions have been proven to be useful, and these do
multiple duty:

• http. More and more software functions by

being commanded over a Web interface. As
mentioned above, the popular OpenStreetMap
editors are among these. Of course, http

(together with tls) is still needed to retrieve the

external data to be imported!

• tdom. Parsing and forming data in HTML and

other XML dialects is again essential to modern
interoperability.

• tdbc::postgres. As mentioned above, all the

geometric heavy lifting is delegated to PostGIS.

• clock:rfc2822. This one turns up surprisingly

often, in asking one server or another, “are my
data up to date?”

Beyond these, the most powerful command that is used is
undoubtedly [exec]. Many of the external systems have

versatile command-line interfaces that are both fast enough
and powerful enough to get the job done.

In short, the ideas presented here very much follow the
principle of “let someone else do the heavy lifting!”

A typical workflow
The power of this minimalist approach to Tcl development
is perhaps best illustrated by following the workflow of one
typical import. In this case, the external data set that is to be
brought in are the boundaries of some four hundred areas,
of sizes ranging from a few thousand square metres to a
few tens of square km, that are maintained by New York
City outside its city limits to protect them from
development (and therefore from polluting the watershed
that supplies its drinking water). Since these areas are well-
marked, and open to the public for recreations like hiking
and bird-watching (and often for hunting, fishing and
trapping as well), it seemed a good idea to map them in
OpenStreetMap.

Figure 1. The index to the recreation area maps

Data intake
Once the legalities were sorted out (easy in this case owing
to the fact that New York City has a strong “open
government” law), the first issue to confront development
was the inconvenient format in which the data were
available.1 The areas themselves were listed in a PDF file
(Figure 1), and the file contained embedded hyperlinks,
each of which designated another PDF file containing a
map of one of the areas. There was clearly a serious job of
“Web scraping” ahead!

The first task of the import was therefore to use http and

tls to fetch this file to the local filesystem. Then, the

command line tool, httptohtml, was used to make an

HTML approximation to the file. The HTML was then
imported into Tcl using tdom.

Some experimentation revealed that every line representing
a recreation area appeared as a row of a table, where the
row had ten cells and the first cell contained a hyperlink.
The name of the recreation area was the text of the link,
and the remaining cells contained access restrictions and
other attributes. This information is enough to make a work
list.

Of course, the work list doesn’t help all that much if
geometry will have to be transcribed manually. The author
was still thinking he’d have to do a Freedom of Information
demand, but out of curiosity began to examine a few
example maps. One such map is attached to this paper as an
Appendix.

As is often the case with maps, it proved essential to read
all the seemingly unimportant notations in the border. One
of them offered a clue: “Prepared by BWS [Bureau of
Water Supply] GIS”. At one point, that department had
been used as a reference customer for the ArcGIS system.
Perhaps the PDF contained the structured commentary that
ARCgis uses to identify map layers and provide projection
information, so that the data can be reconstructed from the
PDF? GDAL revealed that this was indeed the case. The

1 In a private conversation, one of New York City’s GIS
specialists indicated that making the data available in
the original form that the city worked with was entirely
feasible. The analyst suggested a Freedom of
Information demand for the original data. Since such a
demand is often perceived as a hostile act by the
managers of the low-level functionaries, the author
decided to ignore this advice until processing the data
in the available format proved to be too onerous.

file was revealed to be in UTM (Universal Transverse
Mercator) projection, and contained layers with informative
names like “Buildings”, “Elevation Contours”, and “Rivers,
Ponds, Lakes and Reservoirs”. A layer named “PAA”
revealed itself to be “Public Access Area”, and the import
was back in business!

The script for data intake was therefore modified to
download each map (a cache was added so that the
download would be preceded with a HEAD transaction,
and skipped if an up-to-date copy of the file was available
locally). The downloaded file was then run through the
ogr2ogr program (a general-purpose data conversion tool

from GDAL) to push it into PostGIS.

There were several more glitches following this. The full
list of what happens in the PostGIS calculations is probably
of interest only to a maintainer of the script, but a few
examples will be illustrative:

• The larger areas were divided into multiple strings
of line segments and had to be reassembled.

• Some of the areas appear to have been mapped
with raw, noisy GPS traces. These had far too
many vertices, and contained topological errors
like gaps and self-intersections.

• When noisy data was used for boundaries shared
between two areas, it wasn’t necessarily the same
noisy data, giving rise to gaps and overlaps.

PostGIS was used to “do all the heavy lifting” of fixing all
these problems, and it turned out that the fixes gave rise to
only hairline differences in the mapped results.

A Tcl procedure a couple of pages long then converted all
the table cells to proper OpenStreetMap keyword-value
pairs. This procedure ends with an invocation of the
appropriate SQL INSERT … SELECT statement to

accumulate all the imported maps into a single table.

Data conflation
Once developed, the script for data intake can be run
repeatedly without a human in the loop. In fact, the author
runs it sporadically, several times a year, to look for
changes (occasionally the city will purchase new land, or
close an area to the public or change its access constraints).
The task of identifying what data in OpenStreetMap are in
possible conflict with the new import, and resolving the

conflict, is something that requires a certain amount of
human judgment.

The first part remains fairly simple. A SQL query looks in
OpenStreetMap for objects that overlap an imported object
significantly (hairline overlaps at the borders are allowed).
These go in a new table, that also adds a done flag to

indicate that an object has received attention and conflicts
are resolved.

Then a Tcl script functions as a “one-person tasking
manager” to go through the new/changed areas one by one
and present them for review in an editor. For each element
in turn that is not marked ‘done’, it does the following:

• Execute the Python script ogr2osm.py, to pull

the row from the database and output a file in
OpenStreetMap format with the area’s geometry
and attributes.

• Command the editor, using its embedded Web
server, to download the data from the bounding
box of the area from OpenStreetMap; the editor
will now have the current data.

• Command the editor to select the existing version
of the area (if there is one) and zoom to the
selection.

• Command the editor to load the new version of
the area from the local file, as a new layer.

• Await input from the user. For the New York City
import, the updater is a command line application,
and asks only if all conflicts were resolved
successfully. On an affimative answer, it sets the
‘done’ flag and presents the next area.

With both areas loaded in the editor, it is reasonably
straighforward to check for changes to either geometry or
attributes, and save the new data back to the
OpenStreetMap database. While the initial import took
several weeks, the author can usually import a few months’
worth of changes and resolve conflicts in a couple of
evenings’ work.

This manager allows the conflation to proceed over
multiple editing sessions.

A more sophisticated task manager
While the simple command-line task manager was entirely
up to the task of importing the New York City data, the

author felt that it was worthwhile to build a better one for
another database, this one from New York State
Department of Environmental Conservation (DEC). This
database describes all of DEC’s public land, totalling well
over 20000 km². The land uses and access constraints are
much more heterogeneous (including things such as
campgrounds, fish hatcheries, historic sites and
maintenance depots as well as the expected state forests
and wilderness areas). For this reason, the OpenStreetMap
tags are less stylized, and there is more data to check.

For updating this data set, a similar workflow is used. (The
intake is simpler since the entire set is available as a
‘shapefile’ exported from the ArcGIS system, and can
simply be poured into the local database using the
ogr2ogr program). Fixing topology and assigning tags

proceeds much as before (with a considerably more
complex Tcl script assigning the tags).

Identifying the objects in conflict is more complex, because
New York’s updates have included some involved ‘horse
trading’ making changes such as breaking up an area and
dividing its land among adjoining ones, while at the same
time annexing additional newly-purchased land. A single
new feature can overlap with multiple old features, and so
there needs to be further work to match them.

This was best done by matching the features’ names, which,
alas, are not always spelt correctly in the databases.
Fortunately, this problem was solved by a few glances at
Rosetta Code. The cost of a matching was modelled as the
Levenshtein distance between the two names
(http://rosettacode.org/wiki/Levenshtein_distance#Tcl), and
the ‘best’ pairing is then found by solving the ‘stable
marriage problem’
(http://rosettacode.org/wiki/Stable_marriage_problem#Tcl).
Once more, the Tcler’s strategy of “let someone else solve
the hard part of the problem” pays off!

The task manager has a similar structure to the one for New
York City’s recreation areas, but has a Tk GUI attached to
it. Figure 2 shows the layout.

The workflow for this UI is only a little more complicated
than for the command-line one. The mapper begins by
selecting one of the changed areas from the listbox. Making
this selection also has the effect of commanding the editor
to download the appropriate area from OpenStreetMap, and
to load up the new area’s geometry into a new layer.

http://rosettacode.org/wiki/Stable_marriage_problem#Tcl
http://rosettacode.org/wiki/Levenshtein_distance#Tcl

Optionally, the mapper can select “Load Differences”
which creates a new layer showing the symmetric
difference between the old and new geometry. This is
particularly useful if the state has made a small change to a
large area with a complex boundary. It both directs the
mapper to the change and helps ensure that nothing was
missed.

The mapper now gets in the bottom panel a list of tags that
belong to the area. In the case shown in the screen capture,
there are no differences in the tagging. If there were
differences, the text under ‘Value’ would be replaced with a

combobox showing both values, and the mapper would
have to choose what value to apply.

The buttons at the bottom allow the mapper to investigate
further by visiting the area’s web site, to select a collection
of tags using the checkboxes and apply the checked ones,
to copy the checked tags to the clipboard (the JOSM editor
has functions to paste tags), and to mark the object as
‘finished’ (whereupon it will disappear from the listbox).
Once again, editing can proceed in many sessions; the
initial import of these data was conducted in sporadic
evening sessions over several months.

Figure 2. GUI for choosing and editing changed features

Figure 3. Fragment of a map showing numbered routes from multiple networks and route concurrences

Tcl in map rendering
As well as using Tcl in curating the map database, the
author also makes use of it in drawing maps. The largest
single application is code for drawing highway markers in
North American style. This is needed to produce an
American-style map that shows overlaid routes in a usable
fashion. Figure 3 shows a highly information-dense map
with that style of rendering. There are numbered routes
from the Interstate and US highway systems, from two

states and several counties; many of these numbered routes
run concurrently for portions of their length.

Producing this rendering requires that the local
OpenStreetMap data be augmented with some additional
information that distills out the route concurrencies and
presents them in a form convenient to render. (This is all
done in a complicated set of stored procedures in the
PostGIS database) It also requires producing the graphics
for the markers. This last part is done in Tcl, with a script of
a few thousand lines parsing out the route numbers and

deciding what shapes are required, and a procedure that
then launches Inkscape to render the markers. Details are
not presented here; the interesting reader can visit the
project’s Github, where the source code and documentation
can be found.

Conclusion
Tcl is still well in touch with its roots as a ‘glue language’.
With a handful of popular extensions to perform common
data exchange issues like HTTP transactions, SQL access,
and HTML/XML/JSON parsing and fabrication, and with
use of [exec] to run external programs for the ‘heavy
lifting’, it is possible to build some quite complex systems
with a relatively tiny amount of code.

References
[KUPR10] Kupries, Andreas. “Tcl/GSoC 2010”, in Proc. 17th Annual Tcl/Tk Conference. Chicago, Ill.: Tcl Association, 11-15
October 2010, pp. 111-115. http://www.tclcommunityassociation.org/wub/proceedings/Proceedings-2010.html

http://www.tclcommunityassociation.org/wub/proceedings/Proceedings-2010.html

