
Tcl and the Qt Event Loop
Using Tcl in a Qt Application

Brian Griffin
brian_griffin@mentor.com

Mentor Graphics, a Siemens Business
Wilsonville, OR USA 97070

Abstract
Tcl has been designed to embed into programs to provide an interactive programmable interface to any application.
When a program also contains an event loop, the interaction with Tcl can be problematic when attempting to use Tcl's
event-based commands. This paper will describe the effort involved in integrating Tcl's event loop with a Qt-based
application as an example of how easy this can be for other possible applications.

Problem Statement
Working with multiple design analysis tools requires a powerful advanced GUI allowing designers and testers to
validate hardware designs and diagnose problems with the design. A new common GUI was developed to address
the needs of these applications. This GUI application, implemented using the GUI toolkit Qt written in C++, employs
Tcl internally as well as to interface with other tools, and as a user command interface. The original internal use of
Tcl worked fine, but adding and reusing code from other applications had problems when event-based commands
were used, such as [after], [vwait], and [fileevent]. This was due to the independent Qt and Tcl event loop
code not knowing about events in the others' queues.

Event Loop
An event loop is a mechanism for dispatching work that is to be started by an event. An event can be anything, but
the most common are time events and input events. The event loop also provides a way for allowing a program to do
nothing. An implementation of an event loop would provide ways to define events, schedule work for a given event,
and a way to cancel it. Both Tcl and Qt provide ways to schedule callbacks based on a period of time, or the
availability of data on an IO device, and also a way to wait until something happens. Everything else is just
particulars, fine print, and details.

Tcl's Event Loop
Tcl's implementation of the event loop provides access via Tcl commands. Timer and IO callbacks can be scheduled
via [after] and [fileevent], and the program suspended via [vwait]. C API calls are available to do the
same. There are also ways to define custom event sources via a C API to define how to check for event source
readiness, queue an event callback, and delete a queued event.

What about the "loop" part of event loop? It is true that there is no "loop" in Tcl's event loop code per se, nor in Qt's
event code as well. Instead, the loop is embedded in the commands [vwait] and [tkwait], which repeatedly call
the Tcl event loop, Tcl_DoOneEvent(), until the specified state changes. Tcl/Tk programs would then have a loop
something like:

In Tcl:
set done no
while { ! $done } {
 vwait done
}

Or in Tk:
while {[winfo exists "."]} {
 tkwait window "."
}

Loops like these are already part of Tcl_Main() and Tk_Main(), and can be be overridden using
Tcl_SetMainLoop().

Tcl_DoOneEvent()
Let's take a look at what goes on in Tcl_DoOneEvent(). As the name implies, this code looks for a single event to
process, then returns. If no events are found, then it it will wait for an event, unless directed otherwise. Here is a
pseudo representation of the code for DoOneEvent, written this way for readability.

But wait, earlier it was stated that there is no loop in the event loop code, but in the above representation, there is a
"forever" loop, so what's going on? Note that the loop is full of break statements, so it really doesn't loop very much
at all. The looping is only performed while no events are found.

Something less common, but found in Tcl, is a way to customize the entire event loop. Detailed information on how to
do this and the C API's involved is described in the Tcl_InitNotifier() man page. This feature can be used to
integrate Tcl into any system that already has an event loop, allowing the application's events and Tcl events to
operate cooperatively together.

Implementing a custom Event Loop
Tcl's custom event loop requires a set of functions to implement the various parts of the event loop system.

Simply stated, by implementing each of these functions, Tcl event operations should function as required. The
remainder of this paper will describe the process of implementing each of these in a Qt application. The technique
used to accomplish this was to review Tcl's internal unix implementation for each of these functions, and then find
equivalent routines in Qt that provide the same set of services.

typedef struct Tcl_NotifierProcs {
 Tcl_SetTimerProc *setTimerProc;
 Tcl_WaitForEventProc *waitForEventProc;
 Tcl_CreateFileHandlerProc *createFileHandlerProc;
 Tcl_DeleteFileHandlerProc *deleteFileHandlerProc;
 Tcl_InitNotifierProc *initNotifierProc;
 Tcl_FinalizeNotifierProc *finalizeNotifierProc;
 Tcl_AlertNotifierProc *alertNotifierProc;
 Tcl_ServiceModeHookProc *serviceModeHookProc;
} Tcl_NotifierProcs;

forever {
if (ServiceEvent()) { break }
foreach Event-Source { src->setup() }
WaitForEvent(WAIT ? blocktime : NULL)
foreach Event-Source { src->check() }
if (ServiceEvent()) { break }
if (ServiceIdle()) { break }
if (! WAIT) { break }

}

Set Timer
The setTimerProc is used for the [after] command to wake up the event loop so it will run the [after] scripts at
the appropriate time. Tcl internally determines the time value-based on the set of pending [after] tasks. The Tcl
implementation, which is rudimentarily based on the X11 API, uses the XtAppAddTimeOut() function. Qt's
equivalent function is the QTimer class.

Timer Proc
The callback made when the timer matures needs to trigger evaluation of the event queue to determine what
scheduled work needs to be performed. In Tcl, this is done by calling Tcl_ServiceAll(). For Qt, this is done by
returning to Tcl. Why it is done this way will be explained later.

Tcl (unix):

if (notifier.currentTimeout!=0) {
 XtRemoveTimeOut(
 notifier.currentTimeout);
}

if (timePtr) {
 timeout = timePtr->sec * 1000 +
 timePtr->usec / 1000;
 notifier.currentTimeout =
 XtAppAddTimeOut(
 notifier.appContext,
 (unsigned long) timeout,
 TimerProc, NULL);
} else {
 notifier.currentTimeout = 0;
}  

Qt:

if (! timer) {
 timer = new QTimer(this);
 connect(timer,
 SIGNAL(timeout()),
 SLOT(TimerProc(void)));
}

timer->stop();

if (timePtr) {
 long timeout =
 timePtr->sec * 1000 +
 timePtr->usec / 1000;
 currentTimeout =
 timer->start(timeout, true);
}

Tcl (unix):

static void
TimerProc(
 XtPointer clientData, /* Not used. */
 XtIntervalId *id)
{
 if (*id !=
 notifier.currentTimeout) {
 return;
 }
 notifier.currentTimeout = 0;

 Tcl_ServiceAll();
}  

Qt:

void
tclNotifier::Timerproc(void)

{
 if (timerPtr) {
 timerPtr->stop();
 theTclNotifier->myexit(-2);
 }
}

Create File Handler
A Tcl File Handler is the mechanism by which [fileevent] is implemented. It registers interest in state changes to
a given channel (file, pipe, socket, etc.) Tcl (unix) uses the select() call to determine when a particular channel
has a state change. It uses an internal list to build a mask of interested file descriptors which is then passed to
select() at the appropriate time. For Qt, interest in a particular file is registered with Qt using the
QSocketNotifier class. Otherwise, the code here is fairly similar; the notifier code maintains a list of registered
QSocketNotifier objects for each channel.

File Notifier
The SetNotifier method registers interest in state changes to the given channel with Qt.

Tcl (unix):

FileHandler *filePtr;

for (filePtr =
 tsdPtr->firstFileHandlerPtr;
 filePtr != NULL;
 filePtr = filePtr->nextPtr) {
 if (filePtr->fd == fd) {
 break;
 }
}
if (filePtr == NULL) {
 filePtr =
 ckalloc(sizeof(FileHandler));
 filePtr->fd = fd;
 filePtr->readyMask = 0;
 filePtr->nextPtr =
 tsdPtr->firstFileHandlerPtr;
 tsdPtr->firstFileHandlerPtr =
 filePtr;
}
filePtr->proc = proc;
filePtr->clientData = clientData;
filePtr->mask = mask;  

Qt:

filePtr = FirstFileHandlerPtr ?
 FirstFileHandlerPtr->
 GetHandler(fd) :
 new tclFileHandler(fd,  
 &FirstFileHandlerPtr);  
 
if (mask & TCL_READABLE) {  
 if (!(filePtr->mask &
 TCL_READABLE)) {  
 filePtr->
 SetNotifier(
 QSocketNotifier::Read,  
 mask, proc, clientData);  
 }  
} else {  
 if (filePtr->mask &
 TCL_READABLE) {  
 delete filePtr->read;  
 filePtr->read = 0;  
 }  
}  
// ... repeat for each mode

Qt:

void tclFileHandler::SetNotifier(QSocketNotifier::Type type,
 int mask,  
 Tcl_FileProc *proc,
 ClientData clientData)  
{  
 switch (type) {  
 case QSocketNotifier::Read:  
 read = new QSocketNotifier(fd, type, this, ”tclReadNotifier");  
 read->setEnabled(true);  
 connect(read, SIGNAL(activated(int)), SLOT(FileProc(int)));  
 break;  
 // ... all other modes  
 
 }  
// ...  
}

File Handler Proc
Then, when a state change occurs, a callback is made to queue the user's code for execution. The Tcl and Qt
functions are nearly identical.

Delete File Handler
When a [fileevent] handler is removed, cleanup is necessary.

Tcl (unix):

if (filePtr->readyMask == 0) {
 FileHandlerEvent *fileEvPtr =  
 ckalloc(
 sizeof(FileHandlerEvent));
 fileEvPtr->header.proc =  
 FileHandlerEventProc;
 fileEvPtr->fd = filePtr->fd;
 Tcl_QueueEvent(
 (Tcl_Event *) fileEvPtr,
 TCL_QUEUE_TAIL);
}
filePtr->readyMask = mask;

Qt:
void tclFileHandler::FileProc(
 int xFd)  
{  
 …
 filePtr->readyMask |= mask;  
 FileHandlerEvent *fileEvPtr =  
 (FileHandlerEvent *)ckalloc( 
 sizeof(FileHandlerEvent));  
 fileEvPtr->header.proc =
 FileHandlerEventProc;  
 fileEvPtr->fd = lFilePtr->fd;  
 Tcl_QueueEvent(
 (Tcl_Event *) lFileEvPtr,  
 TCL_QUEUE_TAIL);

Qt:

filePtr = FirstFileHandlerPtr ?
 FirstFileHandlerPtr->GetHandler(fd) : NULL;  
 
if (filePtr) {  
 FirstFileHandlerPtr = FirstFileHandlerPtr->removeHandler(fd);  
 if (filePtr->read) delete filePtr->read;  
 if (filePtr->write) delete filePtr->write;  
 if (filePtr->except) delete filePtr->except;  
 delete lFilePtr;  
}

Wait For Event
The WaitForEventProc is the most critical piece of the Notifier. This is where the event loop has to turn over
control to the operating system, relying on it to resume execution of the program when something of interest occurs.
From the man page:

Ideally, Tcl_WaitForEvent should only wait for an event to occur;  
it should not actually process the event in any way.
 
Later on, the event sources will process the raw events and create Tcl_Events on the event queue in their
checkProc procedures.

As mentioned earlier, this is where select() is called in a unix environment, which is one of several ways to
accomplish this "waiting" step. In the case of Qt, the Tcl notifier needs to treat Qt as the operating system. This
means control is given to Qt to manage the waiting and notification of events.
Qt has 2 different calls into its event loop or notifier: QEventLoop::exec(), and
QEventLoop::processEvents(). The later only scans through the Qt list of queued events, processes them,
then returns. The exec() method, however, will wait if there is nothing queued for evaluation. Provided that the Tcl
notifier has set up appropriate Qt events for all of the Tcl event requirements, then calling exec() or
processEvents() should handle any Qt events as well as the Tcl events. So that is what Tcl_WaitForEvent will
do.

How does it work?
How do all these bits of code fit together to make all the event processing work? Qt applications (should) have, as
the main program, a QApplication class. This object creates the Qt GUI, and then calls app->exec(), i.e., the
Qt event loop. The exec() method is derived from QEventLoop class. This is akin to a Tcl program calling
Tcl_Main, or Tk_Main, or otherwise calling Tcl_DoOneEvent() within a while(!exiting) loop. But there's still a
problem here when introducing Tcl into the mix; where is it that Tcl_DoOneEvent() gets called from the Qt
application? One answer could be when the application calls the Tcl interpreter to execute some Tcl code, and that
code then calls [vwait], or [update]. An example would look like this:

• User presses a button in the Qt application.
• Qt sends a signal to a slot that calls Tcl_Eval()
• The Tcl script executes the command [vwait]
• [vwait] calls Tcl_DoOneEvent()

This works fine for a small set of situations. However, it is not functional for most practical situations because once
control is returned to Qt, any lingering Tcl events will not be noticed until Tcl is called again, possibly, maybe.

QEventLoop *waitLoop = new QEventLoop();  
 
if (timeout && !app->inExit()) {  
 // Call Qt to do the waiting, with a timeout determined by Tcl 
 QTimer::singleShot(timeout, QtclNotifier, SLOT(myexit()));  
 didOne = waitLoop->exec(QEventLoop::WaitForMoreEvents);  
} else {  
 didOne = waitLoop->processEvents(QEventLoop::AllEvents);  
}  
 
return ! didOne;

The solution to this is simple. Remember that the implementation for Tcl_WaitForEvent() will call Qt's exec()
or processEvents(). So if app->exec() calls Tcl_DoOneEvent() instead, Tcl will end up calling
QEventLoop::exec() when there is nothing for Tcl to do.

Event Loop Recursion
When the event loop is called from user's code, and since the event loop, in turn, calls user's code when handling an
event, the event loop is called recursively. This is normal and expected, even though dangerous due to the potential
for dead locks. Consequently it is important for the event loop code to accommodate recursion.

Qt allows for recursive calls. The QEventLoop::exec() call can be made any time when the program needs to wait for
a response or time.

And for the same reason, Tcl allows for recursion.

So there's no reason to believe it won't happen when mixing Tcl and Qt.

To make sure recursion is safely handled, the WaitForEventProc() uses a local QEventLoop that is exited by the
successful queuing of a Tcl event.

The static variable currentWaitLoop references the bottommost waiting event loop, allowing event callbacks to
terminate the "wait" so that the Tcl event queue can be serviced.

int myApplication::exec()
{
 while (! inExit) {
 Tcl_DoOneEvent(TCL_ALL_EVENTS);
 }
 return exit_status;
}

el->exec() el->exec() el->exec()

Tcl_DoOneEvent() Tcl_DoOneEvent() Tcl_DoOneEvent()

el->exec() Tcl_DoOneEvent() el->exec()

QEventLoop *prevWaitLoop = currentWaitLoop;  
QEventLoop *waitLoop = new QEventLoop();  
currentWaitLoop = waitLoop;  
if (timeout && !app->inExit()) {  
 QTimer::singleShot(timeout, QtclNotifier, SLOT(myexit()));  
 didOne = waitLoop->exec(QEventLoop::WaitForMoreEvents);  
} else {  
 didOne = waitLoop->processEvents(QEventLoop::AllEvents);  
}  
currentWaitLoop = prevWaitLoop;  
return ! didOne;

 void tclNotifier::myexit(int status)
 {
 if (currentWaitLoop) currentWaitLoop->exit(status);
 }

The timer proc and file proc will call the event loop exit once the necessary work has been queued for the event.

Everything else
There are 4 more functions to discuss. For both the alertNotifierProc and the serviceModeHookProc, these
can be left unimplemented (NULL), and Tcl will default to correct behavior. The initNotifierProc and
finalizeNotifierProc perform any necessary initialization and cleanup, respectively, of any global or static
notifier state. I will leave these functions as an exercise for the student.

Conclusion
Once the custom notifier was put into service, integrating complex Tcl into the Qt application has been seamless and
successful. In an actual scenario where there are 4 processes with 5 cross connections using sockets and pipes, Tcl
script-based communications ran flawlessly with an active Qt GUI.

For the case of Qt, mapping the Tcl unix-based notifier into Qt was a very straightforward translation. Understanding
the recursive behavior and placing "Tcl on top" of the event loop hierarchy were the only tricky parts to implementing
this custom notifier. This same process can be applied to other situations where an application with an existing event
loop needs a full featured integration with Tcl.

void
tclNotifier::Timerproc(void)
{
 if (timerPtr) {
 timerPtr->stop();
 theTclNotifier->myexit(-2);
 }
}

void tclFileHandler::FileProc(int xFd)  
{   .
 .
 .

 Tcl_QueueEvent(
 (Tcl_Event *) lFileEvPtr,  
 TCL_QUEUE_TAIL);

 theTclNotifier->myexit(-3);
}

